
FINAL FY04 REPORT FOR

"Naval Automation and Infommation Management
Technology"

(N00014-04-1-0507)

JerTy Pratt, Peter Neuhaus, Jeffrey M. Bradshaw, Niranjan Suri, James Allen, Lucian Galescu

Florida Institute for Human and Machine Cognition (IHMC), Pensacola, FL

Submitted to:

Gary Toth
Office of Naval Research

800 N. Quincy Street
Arlington VA 22217-5660

±ihmc
INSTITUTE FOR HUMAN & MACHINE COGNITION

University of West Florida, 40 South Alcaniz Street, Pensacola, FL 32502

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden tfo this collection of inforrmalion is estimated to average 1 hour per response, including the time for reviewing ,Ogiructlons. Searching exi.1ting dJte .oirc.. .
gthenong end maenlaining the d,ta needed. end completing and reviewing the collection of ntofmation. Send comments regarding this burden eutimate of iother aspect of thi9 collection of
inforrmation. irclading srrggiq i n ftr- reducing the burder,. to Department of Dalense. Washington Headquarters Services, Direcoral•e for Inform nation Operation• and erroor•is (0704-0186f,
1215 Jefaison Davis Highway, Suite 1204, Arlington, VA 22202-4302, Respondents should be aware that notwithstanding any other provision of law, no person shaef be subject to amy
pen-aly (or]ailing to cormnpy with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

03-01-2006 Final Technical Report 01-05-2004 to 3 1-08-2005

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Naval Automation and Information Management Technology

5b. GRANT NUMBER

N00014-04-1-0507

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Dr. Jerry Pratt, Dr. Jeffrey M. Bradshaw, Dr. James Allen, Dr. Lucian
Galescu, Niranjan Suri e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATIONSREPORT NUMBER
Florida Institute for Human and Machine Cognition Final

40 S. Alcaniz St. Final

Pensacola FL 32502

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

Office of Naval Research ONR
Ballston Centre Tower One
800 N. Quincy St. 11. SPONSOR/MONITOR'S REPORT

Arlington VA 22217 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENTnrestricted DI STRI BUTI ON STATE ME NT A
Approved for Public Release

Distributinn i Inlimit-cj
13. SUPPLEMENTARY NOTES

14. ABSTRACT

In future ntilitary scenarios, large numbers of unmanned ground, air, underwater, and surfacc vchicles will work together, coordinated by an ever
smaller number of human operators. In order to be operationally efficient, effective and useful, tJhcsc robots must have competent physical and
sensing abilities, must be ablc to perform complex tasks semi-autonomously, must be able to coordinate with each other, and must ultimately be
observable and controllable ii a useful and intuitive fashion by human operators. In addition, future soldiers will be outfitted with cxoskeletons to
enhance their capabilities, whether carrying heavy loads, swimming, carrying heavy loads, or sealing walls.

Under the Naval Automation and Infomation Management Technology Program (NAIMT), The institute for Human and Machine Cognition
(IHMC) of the University of West Florida has conducted advanced research on unmanned systems and exoskeletons in the areas of (1) underwater
exoskeletoits for enhancing speed and endurance of Navy divers, (2) human-agent teamwork and agile computing and (3) mixed initiative human
control. Progress made in FY04 in each of these three areas is described below.

15. SUBJECT TERMS

Atlificial Intelligence, Human-Cente ed Computing, Augmented Cognition, Biologically-Inspired Robots, Human-Agent
Teamwork, Mixed-Initiative Human Control, Agile Computing

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF Jerry Pratt

PAGES
SUU44 19b. TELEPHONE NUMBER (Include area code)
UUU4U 850-202-4481

Standard Form 298 lRev. 8/98)
Prescribed by ANSI Std. Z39,18

I. Summary

In future military scenarios, large numbers of unmanned ground, air, underwater, and
surface vehicles will work together, coordinated by an ever smaller number of human
operators. In order to be operationally efficient, effective and useful, these robots must
have competent physical and sensing abilities, must be able to perform complex tasks
semi-autonomously, must be able to coordinate with each other, and must ultimately be
observable and controllable in a useful and intuitive fashion by human operators. In
addition, future soldiers will be outfitted with exoskeletons to enhance their capabilities,
whether carrying heavy loads, swimming, carrying heavy loads, or scaling walls.

Under the Naval Automation and Information Management Technology Program
(NAIMT), The Institute for Human and Machine Cognition (IHMC) of the University of
West Florida has conducted advanced research on unmanned systems and exoskeletons in
the areas of (1) underwater exoskeletons for enhancing speed and endurance of Navy
divers, (2) human-agent teamwork and agile computing and (3) mixed initiative human
control. Progress made in FY04 in each of these three areas is described below.

11. Performance Improving Self Contained Exoskeleton for Swimming
(PISCES)

The ability for Navy divers to swim faster and father while using less energy would
enhance their capabilities, enabling them to accomplish missions previously not possible.
Current technology to propel divers underwater is either large and bulky, requires the use
of the hands, or restricts maneuverability. We have developed a Performance Improving
Self Contained Exoskeleton for Swimming, PISCES, which promises to augment a
diver's natural capabilities.

The PISCES Exoskeleton (see Fig. 1) is an underwater, robotic, human-power
augmentation device. This device is designed to help a diver swim faster and farther by
mean of an intuitive interface that amplifies the user's motions. PISCES has all the
control needs on board will eventually be powered by on board batteries. The connection
to the user is a rigid torso brace that transmits the propulsion force from the device to the
user. The exoskeleton frame is connected to the user's legs at the thigh and the shank.
Each of these four connection points consists of a compliant force measuring device to
measure the torque (force) the user is exerting about the two hip joints and the two knee
joints. The force measured at each of these points is used to drive the four motors (one at
each hip and one at each knee).

The motors are DC brushless motors with hall sensors and encoders. The output of the
motor is connected to a harmonic gearbox speed reducer. The motor, halls, and encoder
for each actuator are connected via a single cable to the electronics box. An encoder
measures the deflection of a spring in determining the user's force. These encoders each
have a separate cable that connects to the electronics box. The electronics box houses the

microprocessor, the motor amplifiers, and all the other miscellaneous electronics. The
exoskeleton is currently powered by a tether; we plan to use batteries in separate
containers and connected to the electronics box through a cable.

Figure 1: Front and back view of the PISCES exoskeleton on a display stand (shown
without user). The user straps the clear plastic brace at the top around the torso and
the black knee braces around the thigh and shank of each leg. Two sensors at each
leg between the brace and exoskeleton are used to command the motors at the hip
and knee joints. The electronics system is contained in a waterproof box the user
wears on his or her back.

PISCES Design

Goals
The design goals of PISCES are:

"* Enhanced endurance - The user should be able to swim at I.Om/s for up to four
hours without exhaustion. In comparison, experienced combat divers can swim
for up to four hours at a speed of 0.5m/s.

"* Increased burst speed - The user should be able to sprint at a speed of 1.5mi/s for
up to 30 minutes. In comparison, experienced swimmers can sustain that speed for
a couple of minutes Il1.

"* Natural interface - The exoskeleton should be operated naturally. In order to
swim, the user should simply kick. In order to speed up, the user should kick
faster. A well designed device will directly amplify, without impeding, the user's
natural motions so that it truly is an extension of the wearer's body.

* Low impedance - The device should not impede the natural kick motions of the
user. The interactive forces between it and the user should be minimal.

Design
In this section we discuss the design and hardware of the PISCES exoskeleton. Where
applicable we provide manufacturer and part number information of the hardware used.

Layout of actuators and degrees of freedom
For a human swimming underwater the most efficient muscle power to use for propulsion
is the leg muscles with the flutter kick as the most popular kick style. This kick profile
involves motion of the hip, knee, and ankle joints. However, from studying human
swimming, the role of the ankle joint seems to be mainly passive; during the power stroke
(down), the ankle is pushed to the joint limit, and during the return (up), the ankle is
positioned to minimize the drag on the foot. In addition, the motion is in the sagittal
plane. Therefore, the targeted joints to actuate are the hip and knee joint in flexion and
extension, with motion in the sagittal plane. The result is a total of four actuated degrees
of freedom (Figure 2)

The PISCES exoskeleton structure parallels the legs, residing distal to the sagittal plane.
It is firmly connected to the torso of the user by means of a custom molded polycarbonate
torso brace (Figure 1). This brace transfers the propulsive thrust from the exoskeleton to
the user and is the only rigid connection point between the user and the exoskeleton.

There are two passive joints on the exoskeleton frame (Figure 2). A passive joint at the
hip allows for abduction and adduction. The second passive joint lies just below the knee
joint, with its axis similarly positioned to the passive joint at the hip. This additional
passive degree of freedom is required to allow the user to bend the torso in the frontal
plane.

User interface
A key requirement for a successful exoskeleton is that it has a natural and intuitive
interface. Ideally the user can put the device on and start using it without training. In
order to accomplish this, there must be a means built into the device for detecting the
user's intent.

In fin swimming, the intent of the user is conveyed through the motion of his or her legs.
During forward propulsion the majority of motion occurs in the sagittal plane. Therefore,
the PISCES exoskeleton measures intent through connections at the user's legs at the
thigh and shank (Figure 3). At each of these connections, a custom device measures the
relative force between the user's leg and the exoskeleton (Figure 4). The device consists
of a linear slide whose axis is in the direction of flexion and extension motion of the leg.
The linear slide is spring loaded so that the force between the exoskeleton and the user is
proportional to their relative displacement.

The user wears a knee brace that has two balls, which is part of a ball joint, mounted at
the thigh and shank sections. The user first puts on the knee brace, then snaps the balls

into the quick release sockets that are mounted on the carriage of the linear slides. The
ball joint accommodates slight misalignment and physical variations among the different
users. The quick release enables easy donning and doffing of the exoskeleton.

connection to

Passive
axis

Passive j
axis

S...............iv e a n k le
limt Stops

Figure 2: CAD figure of exoskeleton right leg showing powered and passive axes.
There are two powered axes, one at the hip and one at the knee. There are three
passive axes, one below the hip, one below the knee, and one at the end effector.

The linear position of the carriage block relative to the base drives a rack and pinion
which turns a rotary encoder. The carriage has springs connecting it to the base, so that
the distance the carriage moves from the center position is proportional to the force
applied to the carriage. The value of the relative force can be used as an input into the
control algorithm which drives the servomotors.

Figure 3: Picture of knee brace and attachment to exoskeleton frame. There are two
attachment points between the brace and the exoskeleton frame, one at the thigh,
and one at the shank. At each point, there is a quick connect ball joint for easy
donning and doffing.

Power system
The heart of the PISCES actuation is four brushless DC motors. Electric motors offer
several advantages over other types of actuators. They are easy to control, have good
power to weight ratios, good power to volume ratios, are widely available, and can be
waterproofed relatively easily. For initial tests, direct current electrical power is supplied
by a DC power supply on dry land. The system voltage is limited to 30VDC for safety
reasons because voltages higher than this pose risk of electrocution for the user. From a
power transmission perspective, it is desired to use the highest practical and safe voltage
to minimize current, and minimize wire size. Initial tests will continue to use power
supplied through an umbilical. Once an estimate of the power used by PISCES is
determined, a battery pack system will be designed for untethered operation.

Pinion

User applied0

Figure 4: Exploded view of force measurement system. The encoder assembly has
been moved up to reveal the pinion. The user applies force to the carriage parallel to
the linear rails. Motion of the slide moves the rack and turns the pinion.

Actuator design
The actuator requirements for PISCES were detern-ined from speed and power est'imates
for human underwater fin swimming. The maximum kick frequency of the average
person fin swimming at maximum speed is 62 kicks per minute 121. A higher angular
velocity occurs at the knee Joint because it oscillates with a larger motion than the hip
jo'nt. Using a sinusoidal Joint position profile having amplitude of 110 degrees, the
resulting peak angular velocity Is 60 rpm. An initial power estimate of 500 Watts total
was used to determine the approximate power rating for the motor. This estimate is based
on active drag measurements of humans swimming [31141. Assuming that each leg must
output the full total power, and that each motor Supplies half the power for that leg, a
minimum continuous power rating of 2-50 Watts was specified for each mnotor.

Shaft seal

SOutput disk

Figure 5: Cross sectional view of an actuator. The motor and gearbox are contained
in a waterproof housing. The cable enters the housing at the upper left through a
liquid tight strain relief and is potted on the inside with epoxy. The output disk is
mounted to the output of the harmonic drive and rotates within the shaft seal.

Each of the four actuators consists of a motor, gear reducer, and feedback device all
contained in a waterproof housing (see Figure 5). The motors selected for the exoskeleton
are Moog/Litton brushless motors, part number BN43-25EU-01. This motor has a
continuous power rating of 328 watts, and a terminal voltage of 24 VDC. A rotary
encoder from Agilent (part number HEDL-5640#A13) was mounted onto the back of the
motor to provide incremental position feedback. A harmonic drive from HD Systems
(part number CSG-250-100-2UH-SPA-1733) with a gear ratio of 100:1 was used for
speed reduction. Mounted to the output of the han-nonic drive is a machined aluminum
disk which provides the rotating interface that is exposed to water. The outer surface of
this disk rotates and contacts the fixed surface of a shaft seal (from JM Clipper, part
number JM 0200 152155066HP). Each actuator is connected to the control box via a
single cable. This cable carries motor coil current, motor hall signal and power, and
encoder signal and power. Because of the environment, wire oage, size, number of
conductors, and noise isolation requirements, this cable was custom ordered from Falmat,
Inc. The point of entry of the cable into the housing is sealed with a liquid tight strain
relief as well as potted on the inside with epoxy. The two halves of the actuator housing
are sealed with an o-ring and connected with a v-band style clamp.

Control Strategy
The preliminary control strategy we implemented on PISCES was to convert the user's
intent, as measured by the force measurement systems, into commands to the motors.

Each servomotor used the same control algorithm. The input to the control algorithm for
the hip motor was the reading from the thigh force measurement device, and knee joint
motor was controlled by the shank force measurement. The control strategy was:

k()
where,

Code., is the desired motor velocity

k, is the force to velocity gain

,pp is the user applied force

The force to velocity gain controlled the effective force amplification of the motor. The
higher the number, the more force amplification or muscle augmentation from the
exoskeleton. The desired velocity was then used in a simple proportional feedback
controller:

u = kp (wie, - wlc,) (2)

where,
it is the input torque to the motor

k is the proportional feedback gain

w1,1, is the actual motor velocity

Electronics System
The electronics system is self-contained inside a custom designed waterproof box (see
Figure 6). It consists of a microcontroller, input and output boards, motor amplifiers, and
control circuitry.

The controller used is the CoreModule 600 from Ampro, which is a 400MHz low voltage
Celeron PCIO4 embedded controller. The operating system is real time Linux, from
TimeSys, Inc. The interface with the eight encoders is through a quadrature counter 4136
board from Mesa Electronics- The motor amplifiers used are Accelnet Module part
number ACM-180-20, from Copley Controls Corp. The input to the amplifiers comes
from a PWM board from Real Time Devices (part number DM6816HR). For safety, a
magnet with a pull cord must be placed in a special recess of the outside of the box to
enable the motor amplifiers. When the operator needs to disable the motors, he or she
pulls a cord to remove the magnet which is then detected by a reed switch on the interior
of the box.

Figure 6: Picture of electronics box with cover opened. This box features a double o-
ring seal and waterproof electrical connectors.

There are ten electrical connectors on the control box. Four of these are connectors for
the actuators (Impulse part number XSL-12), four are connectors for the force
measurement encoders (Impulse part number XSJ-9), one is a connector for power
(Impulse part number XSL-4), and one 'is a connector for Ethernet communication
(Impulse part number XSJ-9).
The control code for the exoskeleton is written in real time Java. Duringy the development
and testing, of the exoskeleton, communication with the controller is made through the
Ethernet connection. Through this connection operational data is acquired and Control
parameters can be modified in real time.

End effector
At the end of the shank link of the exoskeleton is a single degree of freedom passive pin
joint which provides extension and flexion of the end effector, or exoskeleton fin (see
Figure 7). This Joint can be unilized on two different modes. In one mode, the Joint limit
hard stops are positioned to freely allow the foot to move between the two limits. These
limits can be positioned in any of the holes for the desired range of motion. In the other
morode, the exoskeleton ankle is pinned to the ankle by means of a screw, preventing any
movement of the ankle. The preferred mode and settings will be determined through
testingb,

Adjustable
joint limit

SAdjustable
joint limit

Screw hole for
fixing angle of end~effector

Figure 7: Picture of end effector joint. The joint is configured to move passively
between the two joint limit stops. The joint can alternatively be configured for a
fixed angle by placing a screw through the denoted hole.

Testing

Passive joint testing and range of motion
One of the important requirements of an exoskeleton is that it assists, and does not
hinder, the natural movements of the user. For the PISCES exoskeleton, this meant that
the user should be able swim naturally while wearing the unpowered device. To test this,
the motors were replaced with passive joints, and the linear slides were locked in position
(i.e. not allowed to move). The user put on the exoskeleton and tried to swim underwater.
This passive joint test of the device was performed three separate times. After each test,
an analysis was performed of the design, examining hardware failures and limits on the
user's range of motion. Redesign and modification of the hardware was made following
the analysis. For the final version, prior to installing the motors, the user was able to
swim naturally with a minimal restriction of the range of motion.

Force tracking
During operation, the exoskeleton's motors are moved based on the movements of the
user. As the user moves his or her legs, the applied force at each link used to drive the
respective motor is derived based on the closed loop control algorithm defined in (1) and
(2). For the initial force tracking test the output of the motor was decoupled from the
force measurement assembly so that the movement of the motor did not affect the applied
force.

The force was manually applied at two different frequencies, 0.5 Hz and 1Hz, with the
latter simulating the maximum kick rate of a human. In examining the closed loop
response of the unloaded motor (see Figure 8), one will note that the actual and desired
curves have the same shape, but there is an attenuation in the magnitude. This is to be
expected; because of the frictional loses in the system, an error in tracking is required in
order to have a non-zero motor velocity (2). The magnitude of this error could be reduced
with a feed forward term based on empirical measurements of the Coulomb and viscous

friction. However, the actual magnitude of wode is controlled by ,f,,, which is in effect the
exoskeleton augmentation factor. Therefore, to have the actual motor velocity track the
absolute magnitude of wOde., is not critical. From a user's point of view, it is more
important that the phase response be good, and that the magnitude response be repeatable
and constant with respect to frequency. In Figure 8b) we see a phase lag of about 30
degrees in the output at an input of I Hz, which is the minimum expected input frequency.

500

K \i -K

-50, -5A-1

Des-a
-1Q00 _ _ _ _ _ _ _ _ _

0 1 2 5 6 7 6 10

Figure 8: Closed loop motor tracking with no load at a) Approximately 0.5Hz
desired signal. Note that there is little phase error. b) Approximately 1 Hz. Note
that the phase error is about 30 degrees. For both plots, the attenuation is the
same.

Discussion

PISCES, an underwater swimming exoskeleton was designed, built, and preliminarily
tested. The robotic device is designed to increase the speed and endurance of a human
swimming underwater. The exoskeleton has been tested in the water for fit, comfort, and
range of motion. The force measurement system, the electronic system, and the actuators
have been tested underwater for an extended period of operation.

Future work will include testing PISCES with a user in the water to optimize the control
parameters and the hardware adjustments. Through testing, the control parameter /k will
be tuned for optimal performance. The preferred mode and limits for the exoskeleton
ankle joint will also be determined from underwater testing with a user. Once the
software and hardware parameters have been determined, PISCES will be ready for
performance evaluation. This will include determining the metabolic benefit through
measurements of oxygen consumption of the user during swimming with and without the
exoskeleton.

PISCES was designed to augment the fin swimming flutter kick. Future versions could be
designed for other styles of swimming, such as the dolphin kick- With the appropriate

interface such a device could make the user not only swimming as well as a dolphin, but
feel as though they were a dolphin. The ultimate goal for this project is to combine the
swimming and terrestrial exoskeleton into a single robotic device. This amphibious
exoskeleton would enable the user to swim fast and far, get to shore, and then walk a long
distance while carrying a heavy load.

Resulting Papers

Peter D. Neuhaus, Michael O'Sullivan, David Eaton, John Carff, and Jerry E. Pratt, 2004.
Concept Designs for Underwater Swimming Exoskeletons. Proceedings of the 2004
IEEE International Conference on Robotics and Automation, New Orleans, LA,
4893-4898.

References
[1] J. Hardy, -200 1 testers' choice fins," Scuba Diving, Nov/Dec 2000.

[2] D.R. Pendergast, J. Mollendorf, C. Logue, and S. Samimy, "Evaluation of fins
used in underwater swimming," J. of the Undersea Ilyperbaric Medical society,
vol. 30, no. 1, 2003, pp. 57-73.

[3] P.D). Neuhaus, M. O'Sullivan, D. Eaton, J. Carff, ,.E. Pratt, "Concept Designs for
Underwater Swimming Exoskeletons, "Proceedings of the 2004 IEEE
International Conference on Robotics and Automation (ICRA '04), New Orleans,
LA..

[4] P.E. di Prampro, D.R. Pendergast, D.W. Wilson, and D.W. Rennie, "Energetics of
swimming in man," J. of Applied Physiology, vol. 37, no. I, July 1974.

II1. Human-Agent Teamwork and Agile Computing

In the years ahead, unmanned systems will be used on an ever-increasing scale [19]. A
key requirement for such systems is for real-time cooperation with people and with other
autonomous systems. While these heterogeneous cooperating platforms may operate at
different levels of sophistication and with dynamically varying degrees of autonomy, they
will require some common means of representing and appropriately participating in joint

tasks. Just as important, developers of such systems will need tools and methodologies to
assure that such systems will work together reliably and safely, even when they are
designed independently.

An equally challenging problem involves the fact that unmanned vehicles are subject to
communication constraints that limit bandwidth and increase latency. In addition,
network disconnection is a concern, whether due to vehicles moving out of
communications range, communications being obstructed by terrain, or a tactical need to
minimize signal transmissions. Finally, communication may sometimes depend on peer-
to-peer networks, where one vehicle communicates with another vehicle by using a third
vehicle as a relay. These problems are particularly acute for undersea and surf-zone
environments.

Both the dynamics of human-autonomous system coordination and the ongoing
management of real-time operational constraints can be addressed by the use of software
agent technology. Software agents are loosely-coupled components designed with a
variety of built-in communicative and collaborative capabilities. In addition to these
built-in generic capabilities, each agent usually serves as a package for some more
specific intelligent functionality (e.g., sensing, fusion, analytic, or navigation behavior).
The combination of these generic and agent-specific capabilities help enable unmanned
vehicles to function as effective "team members" with each other and with other
autonomous systems. Under the strict control of administrator-defined policies, one or
more software agents may be permitted to populate a given hardware vehicle platform or
to move around the network as needed under their own power, operating in dynamically
optimized onboard or off-board combinations.

The combination of human-agent teamwork and agile computing capabilities afford a
degree of flexibility and responsiveness in the configuration and tasking of unmanned
vehicles that goes far beyond what is possible with today's technology. Different tasks
and missions place different requirements on the unmanned vehicles and, given their
limited processing and storage capabilities, the necessary algorithms for responding to
dynamically changing conditions will often need to be pushed to the vehicles in real time.
Changing conditions may require adaptive task allocation among humans and machines,
including a requirement that other nearby resources may need to be rapidly discovered
for immediate exploitation. If a human team member becomes disabled or a vehicle is
suddenly destroyed, the survivability of the system depends directly on being able to
quickly shift tasks and capabilities among people and platforms consistent with pre-
approved operating policies and procedures.

In this research focus, we are addressing these issues through the development of policy-
based human-agent teamwork and agile computing infrastructures. These developments
will result in a robust tearnwork-aware computational infrastructure for unmanned
systems that is secure, reliable, and capable.

Human-Agent Teamwork

Background

KAoS Policy and Domain Services. The increased intelligence afforded by autonomous
systems is both a boon and a danger. By their ability to operate independently without
constant human supervision, they can perform tasks that would be impractical or
impossible using conventional platforms. On the other hand, this additional autonomy, if
unchecked, also has the potential of effecting severe damage in the case of buggy or
malicious software. Because ever more powerful intelligent agents will increasingly
differ in important ways from conventional software of the past, we need to take into
account the social issues no less than the technical ones if the agents we design and build
are to be acceptable to people. Writes Don Norman:

"The technical aspect is to devise a computational structure that guarantees that
from the technical standpoint, all is under control. This is not an easy task.
The social part of acceptability is to provide reassurance that all is working
according to plan... This is [also] a non-trivial task" [17, p. 5 11.

The objective of KAoS is to address some of the technical and social aspects of agent
design for increased human acceptability through a policy-based approach. From a
technical perspective, we want to be able to help ensure the protection of agent state, the
viability of agent communities, and the reliability of the resources on which they depend.
To accomplish this, we must guarantee insofar as possible that the autonomy of agents
can always be bounded by explicit enforceable policy that can be continually adjusted to
maximize their effectiveness and safety in both human and computational environments.

From a social perspective, we want agents to be designed so as to fit well with how
people actually work together. Explicit policies governing human-agent interaction based
on careful observation of work practice and an understanding of current social science
research can help assure that effective and natural coordination, appropriate levels and
modalities of feedback, and adequate predictability and responsiveness to human control
are maintained. These factors are key to providing the reassurance and trust that are
prerequisite to the widespread acceptance of agent technology for non-trivial
applications.

KAoS a collection of componentized policy and domain management services
compatible with several popular agent frameworks, including Nomads [20], the DARPA

1 A more complete study of many of these topics can be found in [5; 9].

CoABS Grid [14], the DARPA ALP/Ultra*Log Cougaar framework
(http://www.cougaar.net), CORBA (http://www.omg.org), Voyager
(http://www.recursionsw.com/osi.asp), Brahms (www.agentisolutions.com), TRIPS [1;
41, and SFX (http://crasar.eng.usf.edu/research/publications.htm). While initially oriented
to the dynamic and complex requirements of software agent applications, KAoS services
are also being adapted to general-purpose grid computing (http://www.gridforum.org),
the Joint Battlespace Infosphere (JBI1; http://www.rl.af.mil/programrs/jbi!), and Web
Services (http://www.w.'.org/2002/ws/) environments as well [13; 25]. KAoS has been
deployed in a wide variety of applications, from coalition warfare [10; 21] and agile
sensor feeds [22], to process monitoring and notification [I1], to robustness and
survivability for distributed systems [15], to semantic web services composition [25], to
human-agent teamwork in space applications [9], to cognitive prostheses for augmented
cognition [5; 18].The adaptability of KAoS is due in large part to its pluggable
infrastructure based on Sun's Java Agent Services (JAS) (http://www.Java-agent.org). For
a full description of KAoS, the reader is referred to [2; 6; 7; 10; 24; 26].

KA ommon SericeM Wn*"a s -n c MwS

K~goS dmain se-, ies prvd h aaiiyfr grups ofaentrobe stutue" it
Add@anization &M agent doain wd" Wof and inubdomans to facilitte human- pagen ft clabrtio

fmta potnilyomle organizatioln ruce ton adistativ e to its to. da ic"

tcos hos~ t'U .bound Caris and, conerslymulil ord OWO romans "a exis cMnurnl on he
sMe ow t D0-on an Crnay be9w nes rted inefnite ys Vn, dependinge or 9whehrplc los

nts a eome Mem s oha non i in

oSoSoimo sern Ser vies speiica , mandg Decnt fictestion

eforganiatins of aglcen d othin andsubdomains [t0;o1 f6aC littes he man-agd cOaWb (at

aents makyy becom members opecficior than Ponetdain t M ormam" ow som of

KwoS oly service alow y forthe spe ifiction managment conflMict esouion and
enf.Paormn oft" poice within Ldomin [10;n 16;26. oicie are sadardW OWL (W0

Web Otoloy Laguag) spci~iatio s'tat- constrai he pefrmn e of sometypeo

action by one or more actors in a given situation [23].2 The policy ontology distinguishes
between authorizations (i.e., constraints that permit or forbid some action) and
obligations (i.e., constraints that require some action to be performed, or else serve to
waive such a requirement). Through various property restrictions in the action type, a
given policy can be variously scoped, for example, either to individual agents, to agents
of a given class, to agents belonging to a particular group, or to agents running in a given
physical place or computational environment (e.g., host, VM).

1. ToZ X

C-W SWA "10O Ký2 ýA- mT_'9

+GU ... - _ h ý

tCA. C-3 -1 'V

L-~ 5- k

- - WE -K

Components and featUres of KAoS as used in the NA1Tapplication

The KoS Policy A dministration Tool (KPA 73)) implements a graphical user interface to
policy and domain management functionality. It has been developed to make policy

management easier for administrators without requiring extensive training. Using KPAT,
an authorized user may make changes to policy or domain structure from anywhere using
a secure Web browser. Alternatively, trusted infrastructure components such as Guards
may, if authorized, propose policy changes autonomously or semi-autonomously based
on their observation of system events.

KPAT can be used to browse and load ontologies, to define, deconflict, and commit new
policies, and to modify or delete old ones. Groups of interdependent policies can be
composed into policy sets. The generic OWL Policy Editor is a powerful view that allows

2Where expression of a policy require going beyond description logic, judicious extensions to the

semantics are possible withiin KAoS (e.g., role-value maps [27]).
SPronounced KAtY-pat.

administrators fine-grained control over any aspect of policy specification. It is driven by
the ontologies loaded into JTP and its constraint-driven interface always provides the user
with the list of choices narrowed to only those appropriate to the context of the other
current selections. Custom editors tailored to particular kinds of policies may also be
added to KPAT and will be automatically invoked by default if a policy about the action
class associated with the given custom editor is selected for editing. When a user
commits a change to an ontology (e.g., a new or edited policy, changes to domain
structure) the Jena framework (http://,www.hpl. hp.com/semweb/) is used to dynamically
build a OWL representation based on the values selected by the user.

- -W 0, 1 P.0.0 .l0fl 0 -

In conjunction with the Mixed-Initiative Human Control team, we are currently
conducting research to develop and evaluate formalisms and mechanisms for adjustable
autonomy and policies that will facilitate mixed-initiative interaction [711. On the
foundation of current policy mechanisms built to support human users, we are building
Kaa (KAoS adjustable autonomy) a component that permits KAoS to perform self-
adjustments of autonomy consistent with policy [8].

The objective of Kaa is to be able to reason about and automatically or semi-
automatically adjust autonomy along whichever dimensions (possibility, perforrnability,
authorization, obligation) are deemed to provide the most effective result. To the extent
circumstances allow Kaa to adjust agent autonomy with reasonable dynamism (ideally
allowing handoffs of control among team members to occur anytime) and with a
sufficiently fine-grained range of levels, teamwork mechanisms can flexibly renegotiate
roles and tasks among humans and agents as needed when new opportunities arise or

when breakdowns occur. Such adjustments can also be anticipatory when agents are
capable of predicting the relevant events [3; 12].

Potential. Actions Permitted Actions

Possible Actions Availble Actions I~ Olgtedt Act tion

Kney:e*desntiptIvdepDiensdentl Indes-ptendmentlyon
DimorabenAcions ofAdjustable Act ons euiemAton

Work Performedco A fo Ato

Duig er e perforedthe followi dng 1X tasks:enty

Obliga rfrwleAtion poiycupotin vbl K AoS.We havequimpemned acins iiilvrino

support intl K PoSformobligation polchiesv(le., onsrintsy thatireqdr orwav
requirements for ceti id fActions inr Acgivens ontx) wItenbrso
enfor Acthem Anmd enha cmnstor th KA T use interfac to defin thm.W

hae Kegun devDelorpmien ofDimulation capabilitives aimndsiewr.Wehv
convrte K~opoicymeprsenaions fromjsthl DAMLtonOWL.

Wor Sarforeadseueatnmuoprto.WinoprtdaintaKoSolc
DrnyenfrcIempentormehans flointo theagiecmptnkbnwds:aagmn

"cOmpiatonen andy uprti ~.W have demonstrated an initial version of teecpblte.W
havepuorchse ifrobotgaicn hardwares (ine. coslttonsrit wtha USequr sooha weaive

comatibe asoeetups)adhvsalsed an initial Umlmnaino AV/UG Roboticntestbeds atd
111G ehave begun ieeomntegrsmuation ofailte our copoenswith. USes inv
convaoratidon ponic thepdsriued feldn frobo architecture.

" Eaffcie and naturealtonumanugen interaction. We perfrormted an initial ~studliy

owhate diplrcaysad rbetchavioare opin(poind moslttoswth effetv for robots toav

communicate common states and actions. We developed an Initial set of
ontologies and notification and event policy Implementation components. We

have begun to integrate KAoS with the dialogue system components and have
demonstrated these capabilities in conjunction with physical robots.

In the second year, we leveraged our previous work to extend our combined systems
capabilities in an application using real robots in an outdoor environment. The scenario
chosen to validate our ideas was lane finding in a littoral environment; an important issue
to our Navy collaborators. The premise is that an amphibious landing is planned in an
area with suspected mines. The basic idea is to search the area to find a path or lane wide
enough for safe transit of landing troops. Our demonstration simulated the scenario using
a large parking lot with mines (buckets) and other obstacles (cones, boxes, garbage cans,
etc.). We used up to four Pioneer 3-AT robots to perform the search. All platforms were
controlled by a single user through the TRIPS multi-modal dialogue system and
communication was via a dynamic ad hoc network provided by IHMC's mockets
implementation. One Raptor 30 helicopter occasionally supplemented the search as a
communications relay. We held demonstrations at both IHMC and NSWC-PC. Our
demonstration highlighted several major areas:

* Matchmaking and Mission Assignment
* Mission Execution Teamwork
* Mixed-Initiative Classification
* Dynamic policy creation and application
* Adjustable autonomy
* Policy governed proactive network maintenance
* Opportunistic resource exploitation

NSWC-PC demo

Matchmaking and Mission Assignment
We have moved away from the traditional static one-to-one matching of operator to robot
and provide dynamic team formation by reasoning about resource capabilities and
providing matchmaking between tasks and resources. A single operator interacted with
the TRIPS dialogue system, using a combination of natural language and graphical input.

To start the mission, the operator highlighted an area on the screen and made a request.
Each resource registered with KAoS and advertised its capabilities. When a requested
task is generated through TRIPS, KAoS can find the available resources whose

capabilities match the requirements of the given task. TRIPS informs the user of available
resources and the users make their selection. TRIPS then uses KAoS to dispatch
commands to the selected platforms.

Mission Execution Teamwork
During mission execution we did not use predefined roles and tasks, but instead we
coordinated joint activity within the distributed KAoS-Robot architecture based on
current capability and availability to satisfy team goals and provide autonomous failure
recovery. Once the robots had been dispatched, they collaborated to divide the area and
begin the task. The robot chooses a non-searched leg of the area, moves to the leg and

begins searching using an algorithm developed by NSWC-PC. The robots use sonar to
find obstacles and a camera to classify them. If the object is determined to be a mine, the
leg is aborted and the team members are updated with the information that the leg is
obstructed by a mine. If the object is not a mine, the robot avoids the obstacle and
continues searching the leg. If the leg is clear, the robot selects another leg to search and
updates the team. If a clear lane of the specified width has been found or there are no
more legs to search, the mission is complete and the robots return to base. Failure of a

single robot does not prevent completion of the mission as the remaining robots will
coordinate to complete the mission. Robots may also be temporarily taken off task in
support of communications relay as described later. Upon completion, they can resume
their search task, coordinating with the team to ensure appropriate collaboration.

Mixed Initiative Classification

Mixed-initiative interaction is a shift away from the model where a human directs the
robot and the robot complies. It allows the human and robot to interact flexibly and
naturally. Each can direct the interaction based on their abilities and needs. We showed
how a robot can work with a human to classify indeterminate objects through an interface
that combines graphics and dialogue as appropriate. Dialogue is handled through the
TRIPS system. Normally the robots take the initiative to classify objects on their own, but
when they are uncertain about the identity of an object they can request assistance from a
human. Using the TRIPS interface in conjunction with KAoS-Robot capabilities operator
can request a video image, adjust the camera angle and zoom, and then assist the robot in
classifying the object.

Can you help me eemn

Dynamic policy creation and application
Most previous work attempts to code all limitations and constraints into each robot a-
priori and is not flexible at run-time. Our work allows for dynamic creation and
application of constraints on robotic platforms at an individual or group level. As policies
are created they can be checked for consistency to identify conflicts early. To
demonstrate the dynamic policy creation and application we use a simple restricted area
policy. The robots freely move through the restricted area at the beginming of the search
when the policy does not exist. We use the KAoS Policy Administration Tool (KPAT,

pronounced KAY-pat) to create the policy. Once created, the policy is automatically
distributed and becomes applicable. The policy delineates a staging area for the troops
that the robots are not allowed to enter. As the robots try to return to base, the new policy
is now effective and requires the robots to alter their path to avoid the restricted area as
shown in the figure below. This is just one simple example of how policy can be used to
manage robot behavior without requiring changes to the robot code or even explicit
commands to the robot. The policy is completely external to the particular robots

emetatonand is viewable by any users working with the robots.

auto

Adjustable Autonomy

We view Adjustable Autonomy as more than just changing the control mode along the
spectrum from teleoperation to autonomous operation. It assures that robots are
continuously operating at the optimal boundary between the initiative of the human and
that of the robot. We use decision-theoretic algorithms to determine if some dimension of
robot autonomy should be adjusted in order to prevent task failure and have the ability to
impose and modify constraints that affect the range of actions available to an agent. As
part of this project, we have developed the KAoS adjustable autonomy component (Kaa).
Kaa monitors the current situation and reasons about what kind of adjustment choices are
available to improve performance. Normally, when a robot fails to classify an object, it is
obliged to get assistance from a human, an action which is typically performable.
However, if the operator is attending to another robot's request, the robot will wait a
specific period and then timeout causing failure of the attempt to get assistance. The non-
availability of the human made this task non-peiformable, even though it is obligated. For
our current scenario, Kaa considers the utility of adjustments to policy constraints based
on safety, timeliness, and completeness. Kaa has several adjustment choices. One is to
remove the obligation, but in this case the performance is unaffected since the
classification will still fail. Another option is to increase performability. Kaa has
knowledge unavailable to individual agents, such as the status of the human, and can use
this knowledge to assist in such situations. Kaa obliges the robot to continue waiting until
the operator is no longer engaged with the other robot, thus making the action
performable again and improving performance, under the assumption that waiting for the
human will result in a more accurate classification. Kaa's role becomes increasingly
important as the complexity of the team, task and environment increase.

Policy Governed Proactive Network Maintenance
We have advanced beyond the standard single hop network techniques to be able to
proactively move resources in support a multi-hop ad hoc network. We also can provide
filtering and transformation of data along the path, all governed by KAoS policies.
Occasionally robots may move out of range and lose communications. As the robot
moves out of range, the connectivity will fail. And the robot will stop. If the robot were to
simply move back into range communications would be restored, but our goal was to
extend the range beyond single hop communications by recognizing the failure and
attempting to proactively restore communications by trying to move an available
resource. KAoS policies are used to manage the use of resources for communications
relay by Flexfeed. There is a policy in place that prohibits the use of resources as a
communication relay, which initially prevents the robot from accepting the task.
However, Kaa determines the critical nature of restoring communications and attempts to
provide a one-time override of the policy. This change increases the allowable actions of
the robot and enables the use of the robot as a communications relay. Once Kaa has
overridden the policy, the robot is authorized to be a communications relay, so the
Flexfeed request can be executed on the robot. The robot moves into the most likely
position to provide connectivity. As the connectivity is restored, the robot that had lost
communications is able to continue searching.

CanYou hell) mi dlrm

Opportunistic resource exploitation
Instead of having a rigid network, we were able to opportunistically leverage resources.
Available resources can be dynamically detected and manipulated to leverage all
available computational power and network bandwidth. Once communications have been
restored, our search capability was reduced by one robot. We introduce a new platform
not engaged in the search, but capable of filling a role of communications relay. As the
helicopter enters the area, a communications path is automatically established by the
Flexfeed infrastructure. The original communications relay robot can detect that it is no
longer needed and is free to continue searching. In this way, we demonstrated flexibility
to dynamically detect changes in the communications environment and automatically
adapt to maximize the effective for a given task.

Helicopter providing communications relay for ground robots

References

Ill Allen, J. F., Byron, D. K., Dzikovska, M., Ferguson, G., Galescu, L., & Stent, A.
(2001). Towards conversational human-computer interaction. AIMaga:ine, 22(4), 27-
35.

121 Allsopp, D., Beautement, P., Kirton, M., Tate, A., Bradshaw, J. M., Suri, N., &
Burstein, M. H. (2003). The Coalition Agents Experiment: Network-Enabled
Coalition Operations. Journal of Defence Science, 8(3), 130-141.

131 Boella, G. (2002). Obligations and cooperation: Two sides of social rationality. In H.
Hexmoor, C. Castelfranchi, & R. Falcone (Ed.), Agent Autonomy. (pp. 57-78).
Dordrecht, The Netherlands: Kluwer.

141 Bradshaw, J. M., Acquisti, A., Allen, J., Breedy, M. R., Bunch, L., Chambers, N.,
Feltovich, P., Galescu, L., Goodrich, M. A., Jeffers, R., Johnson, M., Jung, H., Lott,
J., Olsen Jr., D. R., Sierhuis, M., Suri, N., Taysom, W., Tonti, G., & Uszok, A.
(2004). Teamwork-centered autonomy for extended human-agent interaction in space
applications. AAA12004 Spring Symposium. Stanford University, CA, AAAI Press,

151 Bradshaw, J. M., Beautement, P., Breedy, M. R., Bunch, L., Drakunov, S. V.,
Feltovich, P. J., Hoffman, R. R., Jeffers, R., Johnson, M., Kulkarni, S., Lott, J., Raj,
A., Sunr, N., & Uszok, A. (2004). Making agents acceptable to people. In N. Zhong &
J. liu (Ed.), Intelligent Technologies for Information Analysis: Advances in Agents,
Data Mining, and Statistical Learning. (pp. 361-400). Berlin: Springer Verlag.

161 Bradshaw, J. M., Dutfield, S., Benoit, P., & Woolley, J. D. (1997). KAoS: Toward an
industrial-strength generic agent architecture. In J. M. Bradshaw (Ed.), Software
Agents. (pp. 375-418). Cambridge, MA: AAAI Press/The MIT Press.

171 Bradshaw, J. M., Feltovich, P., Jung, H., Kulkarni, S., Taysom, W., & Uszok, A.
(2004). Dimensions of adjustable autonomy and mixed-initiative interaction. In M.
Nickles, M. Rovatsos, & G. Weiss (Ed.), Agents and Computational Autonomy:

Potential, Risls, and Solutions. Lecture Notes in Computer Science, Vol. 2969. (pp.
17-39). Berlin, Germany: Springer-Verlag.

181 Bradshaw, J. M., Jung, H., Kulkarni, S., Johnson, M., Feltovich, P., Allen, J., Bunch,
L., Chambers, N., Galescu, L., Jeffers, R., Suri, N., Taysom, W., & Uszok, A. (200-5).
Toward trustworthy adjustable autonomy in KAoS. In R. Falcone (Ed.), Trusting
Agents for Trustworthy Electronic Societies. (pp. in press). Berlin: Springer.

191 Bradshaw, J. M., Sierhuis, M., Acquisti, A., Feltovich, P., Hoffman, R., Jeffers, R.,
Prcscott, D., Suri, N., Uszok, A., & Van Hoof, R. (2003). Adjustable autonomy and
human-agent teamwork in practice: An interim report on space applications. In H.
Hexmoor, R. Falcone, & C. Castelfranchi (Ed.), Agent Autonomy. (pp. 243-280).
Kluwer.

1101 Bradshaw, J. M., Uszok, A., Jeffers, R., Sur], N., Hayes, P., Burstein, M. H.,
Acquisti, A., Benyo, B., Breedy, M. R., Carvalho, M., Diller, D., Johnson, M.,
Kulkarni, S., Lott, J., Sierhuis, M., & Van Hoof, R. (2003). Representation and
reasoning for DAML-based policy and domain services in KAoS and Nomads.
Proceedings of the Autonomous Agents and Multi-Agent Systems Conference
(AAMAS 2003). Melbourne, Australia, New York, NY: ACM Press,

S111 Bunch, L., Breedy, M. R., & Bradshaw, J. M. (2004). Software agents for process
monitoring and notification. Proceedings of AIMS 04.

1121 Falconc, R., & Castelfranchi, C. (2002). From automaticity to autonomy: The
frontier of artificial agents. In H. Hexmoor, C. Castelfranchi, & R. Falcone (Ed.),
Agent Autonomy. (pp. 79-103). Dordrecht, The Netherlands: Kluwer.

1131 Johnson, M., Chang, P., Jeffers, R., Bradshaw, J. M., Soo, V.-W., Breedy, M. R.,
Bunch, L., Kulkarni, S., Lott, J., Suri, N., & Uszok, A. (2003). KAoS semantic policy
and domain services: An application of DAML to Web services-based grid
architectures. Proceedings of the AAMAS 03 Wonkshop on Web Services and Agent-
Based Engineering. Melbourne, Australia,

1141 Kahn, M., & Cicalese, C. (2001). CoABS Grid Scalability Experiments. 0. F. Rana
(Ed.), Second International Workshop on Infrastructure for Scalable Multi-Agent
Systems at the Fifth International Conference on Autonomous Agents. Montreal, CA,
New York: ACM Press,

1151 Lott, J., Bradshaw, J. M., Uszok, A., & Jeffers, R. (2004). Using KAoS policy and
domain services within Cougaar. Proceedings of the Open Cougaar Conference
2004, (pp. 89-95). New York City, NY,

1161 Lupu, E. C., & Sloman, M. S. (1999). Conflicts in policy-based distributed systems
management. IEEE Transactions on Software Engineering--Special Issue on
Inconsistency Management.

1171 Norman, D. A. (1997). How might people interact with agents? In J. M. Bradshaw
(Ed.), Software Agents. (pp. 49-55 (see also How might people interact with robots?
http://www.ind.orgld.tmss/hlw might humans int.himl)). Cambridge, MA: The
AAAI Press/The MIT Press.

1181 Raj, A., Bradshaw, J. M., Carff, R. W., Johnson, M., & Kulkarni, S. (2004). An
agent-based approach for AugCog integration and interaction. Proceedings of

Augmented Cogntion: Improving Warfighter Injormation Intake Under Stress.
Orlando, FL,

1191 Summey, D. C., Rodrigues, R. R., DeMartino, D. P., Portmann Jr., H. H., & Moritz,
E. (2001). Shaping the Future of Naval Warfare with Unmanned Systems. CSS/TS-
01/09. Dahlgren Division, Naval Surface Warfare Center, July.

1201 Suri, N., Bradshaw, J. M., Breedy, M. R., Groth, P. T., Hill, G. A., Jeffers, R.,
Mitrovich, T. R., Pouliot, B. R., & Smith, D. S. (2000). NOMADS: Toward an
environment for strong and safe agent mobility. Proceedings of Autonomous Agents
2000. Barcelona, Spain, New York: ACM Press,

1211 Surn, N., Bradshaw, J. M., Burstein, M. H., Uszok, A., Benyo, B., Breedy, M. R.,
Carvalho, M., Diller, D., Groth, P. T., Jeffers, R., Johnson, M., Kulkarli, S., & Lott,
J. (2003). DAML-based policy enforcement for semantic data transformation and
filtering in multi-agent systems. Proceedings of the Autonomous Agents and Multi-
Agent Systems Conference (AAMAS 2003). Melbourne, Australia, New York, NY:
ACM Press,

1221 Suri, N., Bradshaw, J. M., Carvalho, M., Breedy, M. R., Cowin, T. B., Saavendra,
R., & Kulkarni, S. (2003). Applying agile computing to support efficient and policy-
controlled sensor information feeds in the Army Future Combat Systems
environment. Proceedings of the Annual U.S. Army Collaborative Technology
Alliance (CTA) Symposium.

1231 Tonti, G., Bradshaw, 3. M., Jeffers, R., Montanan, R., Surn, N., & Uszok, A. (2003).
Semantic Web languages for policy representation and reasoning: A comparison of
KAoS, Rei, and Ponder. In D. Fensel, K. Sycara, & J. Mylopoulos (Ed.), The
Semantic Web-ISWC 2003. Proceedings of the Second International Semantic Web
Conference, Sanibel Island, Florida, USA, October 2003, LNCS 2870. (pp. 419-437).
Berlin: Springer.

1241 Uszok, A., Bradshaw, J. M., & Jeffers, R. (2004). KAoS: A policy and domain
services framework for grid computing and semantic web services. Proceedings of
the Second International Conference on Trust Management. Oxford, England,

1251 Uszok, A., Bradshaw, J. M., Jeffers, R., Johnson, M., Tate, A., Dalton, J., & Aitken,
S. (2004). Policy and contract management for semantic web services. AAAl 2004t
Spring Symposium Workshop on Knowledge Representation and Ontology for
Autonomous Systems. Stanford University, CA, AAAI Press,

1261 Uszok, A., Bradshaw, J. M., Jeffers, R., Surn, N., Hayes, P., Breedy, M. R., Bunch,
L., Johnson, M., Kulkarni, S., & Lott, J. (2003). KAoS policy and domain services:
Toward a description-logic approach to policy representation, deconfliction, and
enforcement. Proceedings of Policy 2003. Como, Italy,

1271 Uszok, A., Bradshaw, J. M., Johnson, M., Jeffers, R., Tate, A., Dalton, J., & Aitken,
S. (2004). KAoS policy management for semantic web services. IEEE Intelligent
Systems, 19(4), 32-41.

Agile Computing

Background

Agile computing is an innovative metaphor for distributed computing systems and
prescribes a new approach to their design and implementation.

Agile computing may be defined as opportunistically discovering, manipulating, and
exploiting available computing and communication resources in order to improve
capability, performance, efficiency, fault-tolerance, and survivability. The term agile is
used to highlight the desire to both quickly react to changes in the environment as well as
to take advantage of transient resources only available for short periods of time. Agile
computing thrives in the presence of highly dynamic environments and resources, where
nodes are constantly being added, removed, and moved, resulting in intermittent
availability of resources and changes in network reachability, bandwidth, and latency.

The notion of agile computing builds on current research in grid computing, mobile
agents, ad-hoc networking, and peer to peer resource sharing. The specific realization
described here exploits mobility of code, data, and computation and an architecture
independent uniform execution environment to achieve the desired property of agility.

Technical Requirements and Challenges

Resource Discovery
Resource discovery is one of the cornerstones of agile computing and is fundamental to
opportunistically finding resources. The resource discovery mechanism is currently based
on a UDP broadcast mechanism and works over most wireless network environments
based on 802.11. Other approaches can be developed as needed to support different
networking environments. The overall goal is to take advantage of any available and
appropriate discovery services such as Bluetooth, Salutation Protocol and SLP.

Group Formation
A group is defined as a set of systems that specify the scope for resource sharing.
Therefore, formation and regulation of groups is central to agile computing. Groups may
be formed through static configuration or through ad-hoc discovery. For example, all of
the robots performing a search task may be configured to be part of a group. On the other
extreme, a group may be formed when four laptop computers in a meeting room discover
each other through a protocol such as Bluetooth. Group formation is controllable through
policies for security reasons so that the systems that are allowed to share resources can be
regulated.

Architecture Independence
Agile computing implies that computations must be able to take advantage of any
available resources independent of the underlying hardware architecture. If a system fails
unexpectedly, the infrastructure should be able to compensate by running those
computations on another system, independent of architecture. Similarly, if an ad-hoc
g roup consists of nodes of different architectures (say, robots with embedded computers,
PDAs, and laptops running Windows and Linux), any one of the nodes should still be
able to take advantage of any available resources in the other nodes.

Environmental Independence
Architecture independence alone is not sufficient to support migration of computations
between systems. If the environment on each system is different, the computation will

fail after migration due to the sudden change. Environmental factors include the data
resident on a system, configuration of the software on the system as well as any
specialized hardware in the system.

Mobility of Code, State, and Data
One of the key enhancements provided by agile computing over existing approaches is
the exploitation of mobility of code, computational state, and data. Mobility of code is
needed to support dynamically pushing or pulling code to a system in order to change its
configuration or download a new capability. Mobility of computational state is needed to
allow computations to move from one system to another within a group. Such movement
may be triggered for survivability, performance, or to accommodate changes in group
membership. Finally, mobility of data with the computation and/or the code is necessary
to handle potential network disconnections as well as to optimize network bandwidth
usage.

Security
Security is of paramount importance for agile computing to be used in a practical
environment. A system that joins a group and contributes resources should be protected
from abuse. If computations are pushed onto a system, the computations must be
executed in a restricted environment to guarantee that they do not access private areas of
the host system or abuse the resources available on the host. Similarly, the computations
themselves need to be protected from a possibly malicious host that Joins a group.

In addition to satisfying the above requirements the following two challenges must be
addressed to make agile computing successful:

Overcoming Dedicated Roles / Owners for Systems
One of the problems with current systems is that they are often dedicated to certain tasks
or assigned to particular users. Such a priori classification of systems prevents
exploitation of available resources. Agile computing relies on the notion that any
available resource should be utilizable. In order to make this a reality, hardware should be
generic and ubiquitous with the specialization being derived through software. If this
were the case, then one system can easily be substituted for another by means of moving
the software functionality as needed.

Similarly, if systems are assigned to individual owners who are protective about their
systems, then resource sharing will be ineffective. One solution to this problem lies in
resource accounting, which will allow the owner to a system to contribute resources but
then to quantify the contribution in order to receive compensation in some manner.

Achieving a High Degree of Agility
The degree of agility may be defined as the length of time for which a system needs to be
part of a group in order for its resources to be effectively exploited. The shorter the length
of time, the higher the degree of agility. The degree of agility that can be realized is a
direct function of the overhead involved. When a system joins a group, there is overhead
in the group reformation process, in setting up communication channels, and in moving

computations, code, and data to the system. Before a system leaves a group, there is
potentially more overhead in moving active computations off of the system.

The degree of agility may also be defined in terms of the minimum time required in order
to reconfigure when one or more systems are under threat. A system that has a higher
degree of agility will be more survivable.

Figure 3. 1 shows the stages that the infrastructure goes through when a resource becomes
available. The duration of time for which the resource is actually available is t4 - to.
Initially, the infrastructure goes through a discovery phase (from ti, to Q), when the
availability of the resource becomes known. Then, the infrastructure needs to setup the
new resource for use, which takes time from t, to t,. Setup includes such activities as
pushing new code to the new system and/or migrating computations to the new system.

Once the setup process is complete, the new resource is fruitfully utilized by the
infrastructure. This time is represented from t2 to t. This is the actual length of time
during which the new resource is being productively utilized.

Before the resource becomes unavailable, the infrastructure goes through a preparation
phase, which typically involves moving computations out of the resource about to go
offline. This phase takes time from t to t. Once the resource disappears, the
infrastructure goes through a recovery phase (from ta to tQ). This recovery phase might
involve activities such as finding other systems to distribute the computations that were
removed from the resource that went offline.

to t2 t3 t4 t5

Figure 3.1: The Different Phases of Resource Utilization

In an ideal environment, the discovery, setup, preparation, and recovery times would be
0. The goal of the agile computing approach is to try and minimize these times as much
as possible. The agile computing middleware being developed will help to better
understand the current state of the art with respect to the overhead associated with each of
these phases. An important analysis is to predict the impact of technology changes on
each of these phases, thereby predicting the degree of agility of future systems.

Another interesting tradeoff involves preparation time versus recovery time. The
expectation is that they are inversely proportional. That is, the greater the preparation

time, the lesser the recovery time. For a system to be highly survivable, the required time
to prepare should be as close to 0 as possible.

System Components

The overall architecture for the agile computing framework consists of a kernel
component, a coordination component, the mockets communications library, and the
FlexFeed publishlsubscribe library.

Agile Computing Kernel
Each participating node runs a specialized Java-compatible kernel (the Agile Computing
Kernel) that provides a platform-independent execution environment and a set of local
services such as policy enforcement and resource control.

The Agile Computing Kernel contains a uniform execution environment, a resource
manager, an interface to a policy manager, a group manager, and a local coordinator.
Figure 3.2 shows the main components of the Agile Computing Kernel. These
components provide the set of capabilities that the running processes rely upon to take
advantage of the agile computing framework. They constitute a middleware through
which processes communicate and migrate between nodes. The following subsections
provide a brief explanation of each of the components.

Agile Computing Kernel

Local Coordinator

Policy Manager Interface Group Manager

D=iscovery 'Service
R esoure Manager

Uniform Execution Environment

SecurityEnforcer " State Capture Mechanism

Resource Accounting Mechanism Resource Redirector

Java-compatible Virtual Machine

Figure 3.2: The Agile Computing Kernel

Uniform Execution Environment
The Uniform Execution Environment provides a common abstraction layer for code
execution that hides underlying architectural differences such as CPU type and operating
system. The execution environment supports the dynamic deployment and activation of

services, dynamic migration of services between kernels, secure execution of incoming
services, resource redirection, resource accounting, and policy enforcement.

The implementation of the Uniform Execution Environment is currently based on either
Aroma or the standard Java VM. Aroma is a clean-room implementation of a Java-
compatible VM designed to provide architecture independence and support for agile
computing requirements. Aroma was designed from the ground up to support capture of
execution state of Java threads, provide accounting services for resource usage, and
control resource consumption by Java threads. Moreover, the captured execution state is
platform independent, which allows migration of computations between Aroma VMs that
are running on different hardware platforms. The capabilities of the Aroma VM are
critical to ensure secure execution of mobile code.

A standard .lava VM is an alternative to the Aroma VM and provides higher performance.
Adding resource control capabilities to the standard Java VM will provide a subset of the
capabilities of Aroma. The JRaf2 framework is an example of a resource management
framework for Java. A deployment of the middleware can contain any combination of
kernels with Aroma and Java VMs, thereby providing additional flexibility.

There are no implicit or explicit requirements to use Java as the language for the
implementation of the agile computing infrastructure. However, Java provides many
desirable features for a mobile-code based framework. Moreover, the virtual machine
architecture of Java provides platform independence.

Besides the Java-compatible VM, the execution environment also includes a set of
software components that support interaction between the kernel and locally running
services. These components are: a) the Security Enforcer, b) the Resource Accounting
Mechanism, c) the State Capture Mechanism, and d) the Resource Redirector.

The Security Enforcer ensures that running services will have limited access to system
resources to avoid denial of service (DOS) attacks. This component receives settings
from the Policy Manager component specifying usage restrictions for each service
running in the VM. The restrictions can be established during service deployment,
migration, or even at runtime, after the service execution has started. This component
also provides authentication and encryption mechanisms for secure data and state
transfer.

The Resource Accounting Mechanism provides a facility to track resource utilization at
the service level inside the VM. The mechanism is used by the Security Enforcer and the
Resource Manager components to estimate overall kernel load and resource availability.
The resource utilization profile of the service is also made available to the coordination
component, which can use the information to decide optimal placement of services within
the environment.

The Resource Redirector provides the means to transparently move links to local or
remote resources when services are migrated between kernels. Consider, for example, a

scenario where a service has two network connections open to remote nodes. Due to an
imminent power failure the service needs to move to another intermediate node. In this
case, the Resource Redirector on each kernel will negotiate a redirection of the resources
(the network connections in this case) to transparently move the service with no apparent
interruption of the links. For the computation in this example, the migration happens
seamlessly and the network connections with the remote hosts are maintained during the
migration. The Resource Redirector implementation relies on the Mockets framework to
provide migration of communication endpoints.

The State Capture Mechanism provides the necessary means to capture execution state of
one or multiple services running in the execution environment. The execution state can be
captured at any point between the execution of two Java bytecodes. The state information
can then be persisted or moved to another host to resume execution on the very next
bytecode. This capability is only available in conjunction with the Aroma VM and not the
standard Java VM.

All these components work in concert with policies and the Resource Manager that are
also part of the kernel but not directly integrated with the execution environment. The
Resource Manager is primarily concerned with higher level interactions with the
Coordinator and other kernels, but it does rely on the execution environment components
to locally perform and enforce resource utilization policies.

Policy Manager Interface
The policy manager interface is responsible for communicating with the KAoS policy
and domain services framework. KAoS manages the specification, conflict resolution,
and distribution of policies to the enforcement components (in this case, the agile
computing infrastructure). The interface component provides a facility for other
components in the kernel to query and determine policies and restrictions that apply to
local and remote services and nodes.

Resource Manager
The Resource manager provides an interface for the Coordinator and remote kernels to
query and provide information about local resource utilization.

Resource availability is one of the metrics considered by the Coordinator when
calculating optimum distribution of services. The Resource Manager acts as a bridge
between the Accounting Service in the execution environment and the Coordinator. It
monitors local resource utilization in the execution environment and interacts with the
Coordinator to request migration of local services or to notify it of local resource
availability for the Framework.

Group Manager
The Group Manager is the component responsible for identifying all the nodes that
participate in a group. The framework is designed to handle highly dynamic
environments, where nodes join and leave the framework at any arbitrary rate. Therefore,

a fundamental requirement is to efficiently and accurately identify other available nodes
and services.

The role of the Group Manager is to coordinate with the Policy Manager to ensure proper
advertisement of services and to identify and locate services required by local processes.

Although very useful for some types of applications, lookup services fail to provide
important features that are necessary for agile computing. Some of these features are
offered instead by the notion of service discovery.

The Group Manager relies on service discovery mechanisms, which provide a more
general notion of service identification and location. In general, discovery protocols rely
on the establishment of a global representation or state of the framework, available to
each node. Unlike registry lookup, service discovery is an active service that announces
the arrival and departure of service providers and capabilities. It doesn't necessarily rely
on a centralized registry and it provides means to ensure service availability.

A dynamically formed group is a fundamental structural notion in agile computing. A
group is essentially defined as a set of hosts that have joined together to share resources
(for example, a set of laptops in a conference room during a meeting). Figure 3.3 shows
one possible arrangement for a set of hosts. Note that groups may be disjoint or

overlapping. An overlapping group is created by the existence of one or more shared
hosts. A host may join multiple groups. Various grouping principles are possible but
likely candidates are physical proximity, network reachability, and ownership.

S Group Three

- -,.- .H°. -ot6j~\3. ~H tt
(Group eK Kernel

Hos 1-

Kernels s
______KermelI

SHost 2
Kernel

GopTwo

Host 3 Host 4 < Hs
erne K... Kernel Kenl

Figure 3.3: Runtime Grouping of Hosts

Hosts in a group might belong to different administrative domains, which creates another
type of grouping. Domains are used to express common policies for hosts and to
conveniently administer them. Domains tend to be more static compared to runtime
groups. Figure 3.4 shows a configuration with two domains and one group.

Domiain K

Figure 3.4: Relationship between Domains and Groups

Local Coordinator
The local coordinator works in conjunction with other local coordinators as well as
centralized or zone-based coordinators to perform resource allocation, service
deployment, service invocation, and service migration decisions. The coordination
mechanism is discussed further in section the next section.

Coordinator
The coordinator is the logical entity that manages the overall behavior of the agile
computing middleware. The coordinator monitors node and resource availability as well
as network connectivity and bandwidth. Client requests are received by the coordinator,
which handles allocation of resources. The coordinator also performs proactive
manipulation of nodes, such as moving a node to act as a relay in order to restore a lost
communications link. Coordination is a continuous process as the resource allocation
needs to adapt to changes in the environment.

The coordinator may be realized using either a centralized approach, a zone-based
approach, or a fully distributed approach. Figures 3.5 (a), 3.5 (b), and 3.5 (c) show the
three different approaches.

NMode

Agil Cuf~m Krnt~~

Noce Lo ca ICoord inarýý Node

Looi cCoor din r LocalCoordinalr

NVde

fI

"•Cenltalizad
Lo rL [dCoordinator

Figure 3.5 (a): Centralized Coordination Approach

In the centralized approach, a single node behaves as the coordinator at any given point in
time. This coordinator communicates with the local coordinator at each of the nodes.
Requests from clients are sent to the coordinator, which in turn issues commands to the
other nodes. If the coordinator (or the node) fails, then a new coordinator can be selected
through an election process.

Like any other centralized approach, the centralized coordinator is the simplest, but is not
scalable and introduces a bottleneck as well as a single point of failure.

A --------- 77777

LGb onVICnq, Kemali~~ d /
I1! Il/i'

Neesj

.~~~~~~~~--- i -------

Fiur .5e Coodinatoc

In the zone-based coordination approach, nodes are grouped into zones, each of which
has the equivalent of a centralized coordinator. Zones are typically created based on
network proximity (which, in wireless environments, also implies physical proximity).

One of" the nodes in a zone is elected to be the zone coordinator. This zone coordinator
interacts with all the other local coordinators within the zone (much like the centralized
approach) and also with other zone coordinators.

Two structural arrangements are possible with the zone-based approach - peer-to-peer
and hierarchical. Figure 3.5(b) shows a fully connected peer-to-peer arrangement
between the zones, although it is not necessary for all of the zone coordinators to be in

direct communication with each other.

Nocde

Figure 3.5 (N): Distributed Coordination Approach

The last possibility is a fully distributed coordination approach, as shown in Figure
3.5(c). In this approach, there is no centralized or partially centralized coordinator at all.
Each of the local coordinators directly communicates with other local coordinators as
needed. Again, Figure 3.5(c) shows a fully-connected arrangement, but that is not a
requirement. The fully distributed coordination approach does not have a single point of
failure but like most distributed algorithms, it is the most complicated approach.

In addition to the three different approaches, a number of different coordination
algorithms are possible, based on the context and the problem to which the agile
computing middleware is applied.

The overall goals and desired behavior of the coordinator can also be regulated via
policies. Policies do not specify the coordination strategy, but rather runtime constraints
on the strategy. For example, policies can be used to specify that only 50% of a node's
CPU should be used, or that a node with less than 1 hour of battery life should not be
exploited. Policies are specified using the KAoS framework, which allow the
administrators or maintainers of the system to dynamically change behavior at runtime.

Mockets
Mockets (for "mobile sockets") is a comprehensive communications library for
applications. The design and implementation of Mockets was motivated by the needs of
tactical military information networks, which are typically wireless and ad-hoc with low
bandwidth, intermittent connectivity, and variable latency. Mockets addresses specific
challenges including the need to operate on a mobile ad-hoc network (where TCP does
not perform optimally), provides a mechanism to detect connection loss, allows

applications to monitor network performance, provides flexible buffering, and supports
pol icy-based control over application bandwidth utilization.

Mockets provides the following five features:
1. Application-level implementation of the communications library in order to

provide flexibility, ease of distribution, and better integration between the
application and the communications layer.

2. A TCP-style reliable, stream-oriented service that is designed to operate on
wireless ad-hoc networks thereby making it easy to port existing applications to
the ad-hoc environment.

3. A message-oriented service that provides enhanced capabilities such as message
tagging and replacement, different classes of service (reliable/unreliable
combined with sequenced/unsequenced), and prioritization.

4. Transparent mobility of communication endpoints from one host to another in
order to support migration of live processes with active network connections.

5. Interface to a policy management system in order to allow dynamic, external
control over communications resources used by applications.

Mockets interfaces with the agile computing kernel to provide information about
connection establishment (or failure), communication statistics, and connection loss. All
the network communication between the clients and the services as well as between the
components of the agile computing middleware is performed via Mockets.

FlexFeed
FlexFeed provides an application-level interface that is customized for hierarchical data
distribution in tactical environments. The goal is to leverage from the multi-hop nature of
data distribution paths to distribute processing tasks in the path (in-stream data
processing), striking a balance between data processing and data distribution.

The component relies on the agile computing framework for resource allocation and it
leverages from mobile software agents to efficiently deploy filtering and fusion
capabilities in the network. It differs from traditional multicast approaches because of the
cyclic nature of node selection for data processing and for routing (the problem is usually
solved interactively) and it differs from traditional publish-subscribe models in that data
transformation components are deployed on demand (and only while needed), and there
is a continuous re-evaluation of topology of the data distribution tree.

Related Publications

Further details can be found in the following publications:

Surn, N., Bradshaw, J.M., Carvalho, M., Cowin, T., Breedy, M., Groth, P., and Saavedra,
R. Agile Computing: Bridging the Gap between Grid Computing and Ad-hoc Peer-
to-Peer Resource Sharing. In Proceedings of the 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid 2003).

Sur], N., Bradshaw, J.M., Carvalho, M., Breedy, M., Cowin, T., Saavedra, R., and
Kulkarni, S. Applying Agile Computing to Support Efficient and Policy-controlled
Sensor Information Feeds in the Army Future Combat Systems Environment. In
Proceedings of the Collaborative Technologies Alliance Conference (CTA 2003).

Carvalho, M_ and Breedy, M. Supporting Flexible Data Feeds in Dynamic Sensor Grids
Through Mobile Agents. In Proceedings of the 6th International Conference in
Mobile Agents (MA 2002) Agents, Barcelona, Spain, October 2002.

Carvalho, M., Surn, N., Arguedas, M. (2005) Mobile Agent-based Communications
Middleware for Data Streaming in the Battlefield. In Proceedings of the 2005 IEEE
Military Communications Conference (MILCOM 2005), October 2005, Atlantic
City, New Jersey.

Sur], N., Tortonesi, M., Arguedas, M., Breedy, M., Carvalho, M., Winkler, R. Mockets:
A Comprehensive Application-Level Communications Library. In Proceedings of
the 2005 IEEE Military Communications Conference (MILCOM 2005), October
2005, Atlantic City, New Jersey.

Carvalho, M., Bertele, F., Suri, N., The ULM Algorithm for Centralized Coordination in
FlexFee. In Proceedings of the 9 "h World Multi-Conference on Systemics,
Cybernetics and Informatics. (WMSCI), July, 2005.

Carvalho, M., Pechoucek, M., Sun', N. A Mobile Agent-based Middleware for
Opportunistic Resource Allocation and Communications. In Proceedings of the
Fourth International Joint Conference on Autonomous Agents and Multiagent
Systems; Defense Applications of Multi-Agent Systems (DAMAS); July, 2005.

IV. Mixed Initiative Human Control

Coordinating the activity of a team of large numbers of unmanned vehicles by a small
number of human operators is a crucial part of the NAIMT research effort. However, the
conventional wisdom is that this may be a very difficult, if not impossible, thing to do.
Equipping unmanned vehicles with policy-based adjustable autonomy adds to the team
the flexibility required for quickly shifting responsibilities in time of need, potentially
easing the burden placed on the human operator. Nonetheless, complete autonomy is not
a practical solution for situations involving a lot of uncertainty, or expert strategic
knowledge that computers are not capable of. Therefore, it becomes a necessity to
integrate humans in the coordinated activity in a natural and intuitive manner. This
should involve, on one hand, an interface based on intuitive graphical displays,
synergistically combined with spoken language, and one the other hand, the ability to
develop, discuss, and revise collaborative plans under the framework of Human-Agent
Teamwork discussed above.

As desirable as it is, a fully unconstrained dialogue system that supports true cooperative
behavior is currently beyond the state of the art. For this project, we focused our research
on problems with long-term benefits that also enable more limited practical systems in
the short term. From a technical point of view, a key concern was developing an
architecture that provides humans with intuitive and flexible control of the unmanned
systems. This architecture must support:

"* the ability to use contextual and linguistic constraints to enhance the recognition
of spontaneous speech;

"* the intuitive presentation of information with a capability to "drill-down" and
present information in different ways in response to questions;

"* the collaborative development of plans in which the humans and the unmanned
vehicles combine their knowledge and capabilities to develop the most effective
course of action in response to situations;

"* the tasking and collaborative re-tasking that must occur as the situation evolves;
and

"* the explicit discussion and negotiation of responsibilities to define the parameters
for adjustable autonomy.

Year Two Progress
During FY2003 we had completed an initial integration between our system - based on
the TRIPS dialogue system for collaborative problem solving - and the KAoS
framework, which enabled us to demonstrate robust and efTective participation of a
human operator working with a small team of real robots on a simple mine-finding task.
As a consequence, our efforts in FY2004 were directed in part at incremental
improvements in capabilities and robustness, with less emphasis on architecture.

Simple Logical Interface to KAoS (SLIK)- The KAoS environment provides the
robotic agents with the physical communication framework as well as policy
management and enforcement. The robots themselves have very limited (and potentially

heterogeneous) communication capabilities. On the other hand, TRIPS modules use much
more sophisticated communication language based on speech acts. Therefore, we have
developed a module (SLIK) that acts as a gateway to KAoS, keeping the undesired low
level communication hidden from both TRIPS and the human user. SLIK translates
collaborative problem-solving acts from TRIPS into commands for the robotic agents,
and wraps the answers from the agents into KQML messages. By using SLIK, the rest of
TRIPS is protected from the limitations and different semantics of robot agents and can
continue processing as if every agent has the same communication abilities. As the agents
progress in sophistication, SulK is the only TRIPS component that needs to change while
its interface will always appear the same.

Ontology Mapping - In Year One we developed an initial mechanism for mapping
between the KAoS ontology and the TRIPS ontology. This year we developed that
mechanism into a general module for transforming the semantic, domain-independent
logical form (LF) that is produced by the TRIPS Parser into any domain-specific
knowledge representation (KR), not just the KAoS ontology. The algorithm uses a
database of hand coded mapping rules that match patterns in an LF and generates the
appropriate KR. Specific rules are used to directly create a corresponding KR concept,
while general rules are used to handle more general constructions (such as the agent of an
Action). The resulting KR is used by domain specific reasoners and also to communicate
with external components. New mapping rules are created to map the LF into the KR mor
each domain. The advantage of this approach is that these rules are easier to create than a
new logical representation for every new domain.

Multi-Modal Displays - The graphical interface is of paramount importance for helping
the user quickly assess the situation. At the same time, great economy of expression can
be obtained by using active displays in conjunction with speech (for example, by
selecting an area of the map and saying "Search this area."). Building on the success of
this model in Year One, we decided to re-implement the graphical interface to support
additional situation awareness and active input/output capabilities. The new active map
allows the user to zoom in and out, focus on particular areas, show and hide objects to
increase display clarity, etc. In addition, the map shows at-a-glance information about the
situation, such as:

"* Status of a lane (cleared, mined, unknown);
"* Names for robots and lanes, so the user can refer to them by name;
"* Robots' assessment of the likelihood that an object is a mine, so the user can

prioritize actions according to the situation;
"* Likely size of the objects, using proportional rendering, when such information is

available from the robots.
This year we also integrated a video display that obtains video from the robots via
FlexFeed. The user can ask the robots to provide video at different resolution levels, and
also to zoom in and out, pan left and right, etc., so the user can assist in identifying
objects.

Spoken Language Recognition and Understanding - Much of the work in this area has
been incremental. Building on the Year One system, we have made improvements to the

•,r None

0~ S~ze(A) 17381 IntervaRA4 27

Keyboar Manger

Catrooi Foni Help THIS IS NOT A MINE AND
Channel Desktop kJ

USR> <i > "I Tw ISi9-I< IS11> NOT A MINE AND _<S1!5
SYS> FRAMCES CAN NOT IDENTIFY AN OBJECT
USR> <sil> HAVS FRANCES PAN LUT OF <Sil>
SYS> OK
USR.> <sil> THIS IS NOT A MINE AND <Si1> CONMNUOUS L6iENINCMODE
USR>

TRIPS user interface. Shown are the active map, the dialogue recent history, the
speech recognition resultfor the current utterance, and a portion of the video

display.

lexicon, language models, and the ontology to insure that the system has the knowledge
to understand the user's utterances as the complexity of the scenario (and hence of' the
language) increases.

Resulting Papers
N. Chambers, J. Allen, L. Galescu, and H. Jung (2005). A Dialogue-Based Approach to

Multi-Robot Team Control. In Proceedings 3rd International Mlulti-Robot
S~ystems Workshop. Washington, DC.

N. Chambers (2005). Real-Time Stochastic Language Generation for Dialogue Systems.
In Proceedings European Workshop for Natural Language Generation,
Aberdeen, Scotland.

References

Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L., & Stent, A. (2000). An
Architecture for a Generic Dialogue Shell. Journal of Natural Languagc
Engineering, 6(3), 1-16.

Allen, J. F., & Perrault, C. R. (1980). Analyzing Intention in Utterances. Artificial
Intelligence, 15(3).

Chambers, N., & Allen, J. (2004). Stochastic Language Generation in a Dialogue System:
Toward a Domain Independent Generator. In Proceedings of the 5th SlGdial
Workshop on Discourse and Dialogue, Boston, USA.

Cohen, P. R., & 1. J. Levesque (1980). Speech Acts and the Recognition of Shared
Plans. Paper presented at the 3rd Biennial Conference of the Canadian Society for
Computational Studies of Intelligence, Victoria, B. C.

Ferguson, G., & Allen, J. (1998). TRIPS: An Integrated Intelligent Problem-Solving
Assistant. Paper presented at the NCAI (AAAI-98), Madison, WI.

Galescu, L., Ringger, E. & Allen, J. (1998) Rapid Language Model Development for
New Task Domains. Proceedings of' the First International Conference on
Language Resources and Evaluation (LREC), Granada, Spain.

0z
x

z 0 0 1

uaýa C)j a)c

C Q)

CL ::: > 0 r- Q)
(D~~ o 0 0)h

VL 0 0 cc1 o C < 2
a)Q c3V

-) >
1

a ac o

cz- Q) C-)
3 3

r
:3 U) CE56 L f

c3 3 1C a)E Y)-0 0- U) -2

0c a) 0) z

L)L 02 W)C C

0 u>-2J co 't LU

IaL U)) w~)~

<a) 0 a)C c ()C
4ta af) 7ii 1) ()

Q) 0 ,C)0j C: > F

(13 CD T 1) L

<13 C2 a)D(1 f
0 0L

C) m1

C]Cla CDC] C

C6W

(A 0
w CO

0)0

(n z f InC~Q Ln)
Cf o 0 ac a >-U) 06 a=

< - 0

o 9 V
0 E

.C :f C a) (D) a) Ua) co (6
4-0 co~

(0 0 > Z::C) C:J mLL
a) U) <
CT) w U J C

0c c 0 0 O

cca 7 - 0)31

0U C 'a a -')33 9
LL 0 0 4 C C - C

N w Cf) V

C...)D 0 (D m-o'
0 77) 0 0)l I

03) C1 ýF >)
_00

0L LLI-)i

0~ 0D CLZ -~~- > A

